02-3471-4100 info@chayon.co.kr
Select Page
MEF Feeder Cell

MEF Feeder Cell

Applied Stemcell 은 CF-1DR4Neo-resistantSNL (STO) feeder cells과 같은 다양한 Feeder cell line을 제공합니다. 모든 제품은 ISO9001 기준이 적용된 제조시설에서 생산되며, 연구자의 실험조건에 맞추어 다양한 Feeder cell line을 선택할 수 있습니다.

MEF 세포는 미분화 마우스 또는 인간 배아 줄기 세포 (ESC) 및 유도된 다능성 줄기 세포 (iPSC)의 성장을 지원하는 영양 세포 역할을 합니다.
* Feeder cell로 사용하기 전에 MEF 세포는 γ- irradiation 또는 mitomycin-C 처리에 의해 유사 분열적으로 비활성화되어야 합니다
모든 MEF 세포는 미국에서 제조되며 해동 후 평균 생존율은 95 %입니다.

ico_chk01 CF-1 MEF Feeder Cell
CF-1 마우스 배아에서 추출, ESC 및 iPSC 배양 시 사용가능

ico_chk01 DR4 MEF Feeder Cell
DR4 마우스 배아에서 추출되며 Neomycin, Hygromycin, Puromycin 및 6-thioguanine에 내성

ico_chk01 Neomycin resistant MEF Feeder Cell
Neomycin-resistance 유전자를 포함하도록 유전적으로 조작된 마우스 배아에서 분리

ico_chk01 SNL 76/7 (STO 라인)
Neomycin resistance 및 Murine LIF 유전자로 형질전환 된 마우스의 섬유 아세포 STO 세포주에서 유래

MEF 세포는 미분화 마우스 또는 인간 배아 줄기 세포 (ESC) 및 유도된 다능성 줄기 세포 (iPSC)의 성장을 지원하는 영양 세포 역할을 합니다. MEF 세포는 CF-1 마우스 배아에서 분리되며 early passage에서만 사용해야합니다.

CF-1 MEF Feeder cell은 13.5 일 된 마우스 배아에서 유래되었으며, ESC 및 iPSC 배양에 가장 일반적으로 사용됩니다.

 

CAT. Product Name Size
ASF-1201 CF1 MEF, P2, untreated, 1 vial 1*10^6 cells
ASF-1202 CF1 MEF, P2, untreated, 3 vials 1*10^6 cells
ASF-1217 CF1 MEF, P3, irradiated, 1 vial 1*10^6 cells
ASF-1215 CF1 MEF, P3, irradiated, 1 vial 2*10^6 cells
ASF-1213 CF1 MEF, P3, irradiated, 1 vial 4*10^6 cells
ASF-1214 CF1 MEF, P3, irradiated, 5 vials 4*10^6 cells
ASF-1216 CF1 MEF, P3, irradiated, 8 vials 2*10^6 cells
ASF-1225 CF1 MEF, P3, mitomycin-C treated, 1 vial 2*10^6 cells
ASF-1223 CF1 MEF, P3, mitomycin-C treated, 1 vial 4*10^6 cells
ASF-1224 CF1 MEF, P3, mitomycin-C treated, 5 vials 4*10^6 cells
ASF-1226 CF1 MEF, P3, mitomycin-C treated, 8 vials 2*10^6 cells

 

DR4 MEF feeder cell은 Neomycin, Hygromycin, Puromycin 및 6-thioguanine 대한 내성 유전자를 포함하도록 유전적으로 조작 된 13.5일 령 마우스 배아에서 파생되며, Drug selection 하에 ES/ iPS 세포 배양에 최적화되어 있습니다.

 

CAT. Product Name Size
ASF-1001 DR4 MEF, P2, untreated, 1 vial 1*10^6 cells
ASF-1002 DR4 MEF, P2, untreated, 3 vials 1*10^6 cells
ASF-1015 DR4 MEF, P3, irradiated, 1 vial 2*10^6 cells
ASF-1013 DR4 MEF, P3, irradiated, 1 vial 4*10^6 cells
ASF-1016 DR4 MEF, P3, irradiated, 5 vials 2*10^6 cells
ASF-1014 DR4 MEF, P3, irradiated, 5 vials 4*10^6 cells
ASF-1025 DR4 MEF, P3, mitomycin-C treated, 1 vial 2*10^6 cells
ASF-1023 DR4 MEF, P3, mitomycin-C treated, 1 vial 4*10^6 cells
ASF-1026 DR4 MEF, P3, mitomycin-C treated, 5 vials 2*10^6 cells
ASF-1024 DR4 MEF, P3, mitomycin-C treated, 5 vials 4*10^6 cells

Neo-resistant MEF feeder cells은 Neomycin 내성 유전자를 포함하도록 유전적으로 조작되고 G418 selection marker 조건하에 ES/ iPS 세포의 배양에 최적화 된 13.5 일령 마우스 배아에서 파생됩니다.

 

CAT. Product Name Size
ASF-1101 Neo resistant MEF, P2, untreated, 1 vial 2*10^6 cells
ASF-1102 Neo resistant MEF, P2, untreated, 3 vials 2*10^6 cells
ASF-1115 Neo resistant MEF, P3, irradiated, 1 vial 2*10^6 cells
ASF-1113 Neo resistant MEF, P3, irradiated, 1 vial 4*10^6 cells
ASF-1114 Neo resistant MEF, P3, irradiated, 5 vials 4*10^6 cells
ASF-1116 Neo resistant MEF, P3, irradiated, 8 vials 2*10^6 cells
ASF-1125 Neo resistant MEF, P3, mitomycin-C treated, 1 vial 2*10^6 cells
ASF-1123 Neo resistant MEF, P3, mitomycin-C treated, 1 vial 4*10^6 cells
ASF-1124 Neo resistant MEF, P3, mitomycin-C treated, 5 vials 4*10^6 cells
ASF-1126 Neo resistant MEF, P3, mitomycin-C treated, 8 vials 2*10^6 cells

마우스 배아 줄기 세포 (ESC) 및 유도 만능 줄기 세포 (iPSC)는 일반적으로 만능 및 자가 재생 능력을 유지하기 위해 백혈병 억제 인자 (LIF)를 포함하는 배지뿐만 아니라 Feeder cell 에서 배양해야 합니다. Neomycin 내성 및 Muirn LIF 유전자로 형질 전환된 마우스 섬유 아세포 STO 세포주로부터 유래된 SNL 76/7 세포주는 마우스 및 인간 ESC 및 iPSC 배양을 위한 feeder cell로 사용될 수 있습니다.  SNL 세포는 HAT selection (hypoxanthine, amino protein and thymidine)에 민감하며, HPRT (hypoxanthine guanine phosphoribosyl transferase)에 대해 음성입니다.

 

CAT. Product Name Size
ASF-1305 SNL 76/7 mouse fibroblast STO cell line, P12, untreated, 1 vial 2*10^6 cells
ASF-1327 SNL 76/7 mouse fibroblast STO cell line, P14, mitomycin-C treated, 1 vial 5*10^6 cells

ico_chk01 DR4 MEF Feeder Cells

Okubo, T., Hayashi, R., Shibata, S., Kudo, Y., Ishikawa, Y., Inoue, S., … & Nishida, K. (2020). Generation and validation of a PITX2–EGFP reporter line of human induced pluripotent stem cells enables isolation of periocular mesenchymal cells. Journal of Biological Chemistry295(11), 3456-3465.

Ruiz-Gutierrez, M., Bölükbaşı, Ö. V., Alexe, G., Kotini, A. G., Ballotti, K., Joyce, C. E., … & Papapetrou, E. P. (2019). Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI insight4(12).

Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., … & Hovatta, O. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature communications11(1), 1-15.

Takahashi, M., & Yamazaki, S. (2019). Generation of a human induced pluripotent stem cell line, IMSUTi002-A-1, harboring the leukemia-specific fusion gene ETV6-RUNX1. Stem cell research40, 101546.

Gruzdev, A., Scott, G. J., Hagler, T. B., & Ray, M. K. (2019). CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. In Mouse Models of Innate ImmunityHumana Press, New York, NY. 1690:1-21.

Snijders, K. E., Cooper, J. D., Vallier, L., & Bertero, A. (2019). Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. In: Luo Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, Humana Press, New York, NY. 1961:185-209.

Tan, C. E. H. (2018). Establishing a genetically engineered mouse ES cell line expressing an inducible Xist transgene along chromosome 19 (Doctoral dissertation).

Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., … & Eshkind, L. (2017). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biologyhttps://doi.org/10.1016/j.matbio.2017.11.002.

Marttila, S. (2017). Establishment and characterisation of new human induced pluripotent stem cell lines and cardiomyocyte differentiation: a comparative view. Master’s Thesis, University of Tampere, May 2017.

 

ico_chk01 CF-1 MEF Feeder Cells

Thakurela, S., Sindhu, C., Yurkovsky, E., Riemenschneider, C., Smith, Z. D., Nachman, I., & Meissner, A. (2019). Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature communications10(1), 1-11.

Smela, M. P., Sybirna, A., Wong, F. C., & Surani, M. A. (2019). Testing the role of SOX15 in human primordial germ cell fate. Wellcome open research4.

Spada, F., Schiffers, S., Kirchner, A., Zhang, Y., Kosmatchev, O., Korytiakova, E., … & Carell, T. (2019). Oxidative and non-oxidative active turnover of genomic methylcytosine in distinct pluripotent states. BioRxiv, 846584.

Kiamehr, M., Klettner, A., Richert, E., Koskela, A., Koistinen, A., Skottman, H., … & Juuti-Uusitalo, K. (2019). Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. International journal of molecular sciences20(15), 3773.

Barber, K., Studer, L., & Fattahi, F. (2019). Derivation of enteric neuron lineages from human pluripotent stem cells. Nature protocols, 14:1261–1279.

Berecz, T., Husvéth-Tóth, M., Mioulane, M., Merkely, B., Apáti, Á., & Földes, G. (2019). Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. In: Methods in Molecular Biology. Humana Press.

Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., … & Kim, S. H. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer research, canres-2849.

Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., … & Davis, M. M. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 1.

Kiamehr, M. (2019). Induced pluripotent stem cell-derived hepatocyte-like cells: The lipid status in differentiation, functionality, and de-differentiation of hepatic cells. Tampere University Dissertations.

Yeom, K. H., Mitchell, S., Linares, A. J., Zheng, S., Lin, C. H., Wang, X. J., … & Black, D. L. (2018). Polypyrimidine Tract Binding Protein blocks microRNA-124 biogenesis to enforce its neuronal specific expression. bioRxiv, 297515https://doi.org/10.1101/297515

Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation, 128(3). DOI: 10.1172/JCI94996

 

ico_chk01 Neo-resistant MEF Feeder Cell

Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., … & Gage, F. H. (2018). An in vivo model of functional and vascularized human brain organoids. Nature biotechnology, 36(5), 432. doi:10.1038/nbt.4127

Heim, C. N., Fanslow, D. A., & Dann, C. T. (2012). Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells. Biology of reproduction, 87(4), 90-1.

Mauney, J. R., Ramachandran, A., Richard, N. Y., Daley, G. Q., Adam, R. M., & Estrada, C. R. (2010). All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PloS one, 5(7), e11513.

 

ico_chk01 SNL 76/7 (STO Cell Line)

Yang, J., Ryan, D. J., Lan, G., Zou, X., & Liu, P. (2019). In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nature protocols, 1.

Kime, C., Rand, T. A., Ivey, K. N., Srivastava, D., Yamanaka, S., & Tomoda, K. (2015). Practical integration‐free episomal methods for generating human induced pluripotent stem cells. Current protocols in human genetics, 87(1), 21-2.

Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PloS one, 4(12), e8067.

Park, I. H., & Daley, G. Q. (2009). Human iPS cell derivation/reprogramming. Current protocols in stem cell biology.

Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313.

Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature protocols, 2(12), 3081.

McMahon, A. P., & Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6), 1073-1085