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Phenotypic profiling approaches using high-content screening and cell painting techniques are 

becoming more central to successful drug discovery efforts.  Here, we introduce ChromaLive, a 

novel non-toxic dye that labels live cells and provides unique phenotypic fingerprints for accurate 

compound profiling.  By conducting a variety of in vitro assays with ChromaLive, we demonstrate 

its ability to effectively quantify disease-relevant phenotypes with ease and flexibility, and its 

potential for improving efficiency in compound profiling efforts.  Specifically, we demonstrate the 

absence of cellular toxicity from ChromaLive, along with its simple mix-and read staining protocol, 

and a biologist-friendly analysis workflow that uses both supervised and unsupervised analytical 

approaches.  These features of ChromaLive enable kinetic measurements of phenotypic changes in 

live cells at high-throughput, therefore offering a valuable tool for researchers to study dynamic 

cellular processes and the potential of new drug compounds 

 

 

Introduction  
 

High Content Screening in Drug Discovery 

 

 In the field of drug discovery, the traditional approach has involved identifying specific 

targets of interest and designing small molecules to modify their function (Hughes et al., 2011). 

Although, this target-based approach has led to successful clinical translation of numerous drugs 

and compounds, it has also encountered a growing attrition rate (Waring et al., 2015).  In contrast, 

phenotypic drug discovery focuses on probing phenotypic changes in biological systems to identify 

effective compounds (Lee and Berg, 2013).  In fact, phenotypic profiling approaches have emerged 

as a key component of the drug discovery process due to its capacity to capture the complexity of 

biological systems. Indeed, it can reveal biological scenarios other than those originally investigated 

with target-based approaches (Swinney et al., 2011; Vincent et al., 2022). 
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 One central approach in phenotypic drug discovery is high-content screening (HCS), which 

involves the analysis of cellular images to identify and characterise phenotypes of interest.  Unlike 

standard high-throughput screens that provide only averaged information over a cell population, 

HCS captures more detailed and comprehensive data.  This method has been made possible by 

the development of automated imaging systems and image analysis tools driven by artificial 

intelligence (AI) (Bickle, 2010; Danuser, 2011).  By performing HCS with perturbing agents like small 

molecules or gene-editing approaches, researchers have already demonstrated its potential in 

identifying new therapeutic treatments (Oppermann et al., 2016; Lin et al., 2020) 

 

In addition to automated imaging systems and AI-driven analysis, the development of the 

popular Cell Painting technique, which involves labeling specific components of the cell (Bray et al., 

2016), has also been crucial to the success of HCS.  However, Cell Painting requires fixation of cells 

and multiple staining and washing steps.  This process can introduce various challenges, including 

increased experimental design complexity and the risk of disrupting samples.  Moreover, as an end-

point assay, it may overlook valuable kinetic information and overlook high-potential compounds.  

 

We believe that the development of a "mix-and-read" stain for live cells can address these 

limitations, simplify screening procedures, and provide new insights into cellular physiology by 

enabling kinetic measurements throughout the assay. 

 

 

ChromaLive for simpler, live-cell HCS  

 

In this article, we introduce ChromaLive dye, a revolutionary multi-chromatic dye that stains 

cellular components of live cells in a non-specific manner (Figure 1b).  Our goal with this product 

is twofold: to ensure minimal disruption of cellular physiology and to enhance the visualization of 

diverse cellular features for precise phenotypic profiling.  ChromaLive represents a groundbreaking 

"mix-and-read" fluorescent stain.  The use of ChromaLive has several advantages in live cell research. 

Firstly, its non-toxic nature and minimal impact on live cells make it an ideal choice for cell labeling 

and tracking cellular 2 phenotypes over prolonged cell cultures.  Moreover, the unique staining and 

spectral properties of this dye allow for simultaneous highlighting of distinct cell states, making it 

exceptionally suitable for comprehensive phenotypic profiling in live cells. 

 

 The data presented in this article highlights the non-toxic nature of ChromaLive and its 

compatibility with prolonged phenotypic studies on living cells.  Additionally, we provide insights 

into information extraction through automated imaging and data analysis, enabling robust 

phenotypic profiling.  We compare compound testing and phenotypic profiling using different 

analytical approaches to showcase the advantages of ChromaLive and to leverage its unique spectral 
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properties. Lastly, we highlight the ability of ChromaLive to facilitate kinetic measurements of 

phenotypic changes in live cells. 

 

 

ChromaLive, a first in class non-toxic dye  

 

Non-toxic in cell cultures 

 

To evaluate the impact of ChromaLive on cell cultures, multiple approaches were employed 

to compare cells grown in the presence of ChromaLive with those grown in standard medium. 

Initially, a cell counting experiment was conducted using various cell lines cultured for six days 

(Figure 2a).  Remarkably, the presence of ChromaLive in the medium did not exhibit any discernible 

influence on cell proliferation.  Furthermore, cell viability was assessed over a 48-hour period using 

RealTime-Glo™ (Promega) with different concentrations of ChromaLive (Figure 2b), and results were 

consistent with cell counting data, showing no significant differences between conditions 

 

 

 
 

Figure 1. ChromaLive multi-chromatic imaging. a) Excitation and emission spectra of ChromaLive. 

Of note: ChromaLive is excited at 488nm and 561nm, with different resulting emission spectra (in 

green, ChromaLive561: emission spectrum when excited around 561nm, in red, ChromaLive488: 

emission spectrum when excited around 488nm). b) Differentiated HepaRG cells, cultured for 72h in 

presence of ChromaLive and stained with Hoechst 33342.  

Live cells imaged on a Zeiss LSM800 confocal microscope (magnification 20x), in a “mix-and read” 

format (cells in culture medium, with ChromaLive and Hoechst present). (Red: ChromaLive488-Yellow, 

Magenta: ChromaLive488_Red, Green: ChromaLive561, Cyan: Hoechst. Scale bar: 100nm 
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Minimal impact on gene expression patterns 

 

To gain further insights into the potential physiological impact of ChromaLive, an extensive 

RNA sequencing assay was performed.  In this assay, we compared complete transcriptomes of 

MCF-7 breast cancer cells grown in medium containing a control amount of DMSO (0.1%), 

ChromaLive, or commercial dyes such as DRAQ5 and Green CMFDA (CellTracker™ Green CMFDA). 

Principal component analysis (PCA) (Figure 2c) and volcano plots (Figure 2d) were utilised to analyse 

and visualise the data. Notably, the results demonstrate that ChromaLive has a very limited impact 

on gene expression over 24 hours, compared to DRAQ5 (known to exhibit a certain level of 

cytotoxicity as a DNA intercalator (Mari et al., 2010; Richard et al., 2011), and even CellTrackerTM 

Green CMFDA, commonly regarded as a non-toxic dye (Zhang et al., 1992).  For teams interested 

in more detailed information, the complete sequencing data are available upon request (see contact 

information). 

 

 

 

Figure 2. Assessing ChromaLive’s non-toxicity.  

a) Cells were plated at a density of 1,000 cells / well in a 384 well plate, in presence of ChromaLive. 

Adherent cells were additionally labeled for 30 minutes with 1µM Hoechst 33342. Cells were imaged 

and counted on an Opera Phenix at 20x magnification.  

b) MCF-7 breast cancer cells were plated at 1,000 cells / well in a 96-well plate and cultivated with 
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the indicated dilution of ChromaLive for 48h. Cell proliferation was assessed with the RealTime Glo 

assay from Promega.  

c) Principal component analysis (PCA) representation of RNAseq assay. MCF-7 cells were plated at 

500-1,000 cells / well in a 96-well plate and grown for 24h at 37°C, 5% CO2. Medium was then 

changed for medium corresponding to experimental conditions (control: DMSO 0.1%, ChromaLive 

(1x), Green CMFDA (10µM) and DRAQ5 (5µM)) and cells were incubated for a further 24h. Cells 

were then harvested to extract RNA and samples were analysed using the Illumina Nextseq500.  

d) Volcano plot representations of genes exhibiting a significant increase (green) or decrease (red) 

in their expression as compared to the control, in presence of ChromaLive (left graph), Green CMFDA 

(middle graph) or DRAQ5 (right graph). Genes displayed in red or green have an adjusted p-value 

lower than 0.05 

 

 

Imaging ChromaLive 

 

Spectral properties and instrument requirements 

 

ChromaLive is a unique multi-chromatic dye with multiple excitation and emission 

wavelengths, offering exceptional capabilities for high-content screening (HCS).  Acquiring images 

in those different emission channels enable the collection of different intensity profiles, along with 

morphological and texture features that, altogether, ensure accurate differentiation of cellular states 

or cellular types.  Specifically, it is recommended to image ChromaLive in minimally two different 

channels, and optionally three. These two channels are ChromaLive561, and either ChromaLive488_ 

Yellow or ChromaLive488_Red.  Figure 1a illustrates the fluorescence excitation and emission 

spectra of ChromaLive. The option to select between ChromaLive488_Yellow and ChromaLive488_ 

Red is because of their high degree of similarity, which is sufficient for differentiating between 

cellular phenotypes, even when phenotypes only have subtle differences.  However, these two 

channels can still provide slightly different information, hence the option to use both 

ChromaLive488_Yellow and ChromaLive488_Red (refer to Table 1).  In addition, the large Stokes shift 

observed when exciting the dye at 488nm allows multiplexing with additional green dyes (excited 

at 488nm and imaged around 520nm), as well as blue dyes (e.g., Hoechst) or red dyes excited at 

647nm (e.g., DRAQ5).  However, it is important to carefully design multiplexed fluorescence 

experiments and verify fluorescence bleed-through, as it can vary depending on the imaging 

equipment and settings used for image acquisition (see Table 1). 

 

In addition, the large Stokes shift observed when exciting the dye at 488nm allows 

multiplexing with additional green dyes (excited at 488nm and imaged around 520nm), as well as 

blue dyes (e.g., Hoechst) or red dyes excited at 647nm (e.g., DRAQ5).  However, it is important to 

carefully design multiplexed fluorescence experiments and verify fluorescence bleed-through, as it 

can vary depending on the imaging equipment used for image acquisition (see Table 1).  
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Table 1: Recommended excitation and emission settings for ChromaLive and additional stains. This 

is specific to every imaging instrument and proper testing is recommended before adding additional 

stains as well as to define standard imaging settings. 

 

 

 In addition to its multi-chromatic properties, ChromaLive is non-fluorescent in the cell 

culture medium and exhibits fluorescence only upon entering cells. Inside the cell, ChromaLive 

differently stains multiple cellular structures and compartments and is highly sensitive to 

environmental and physiological changes within the cell, resulting in quantifiable spectral changes.  

These features necessitate multiple wavelength excitations and emissions, ensuring the acquisition 

of multi-parametric information crucial for precise phenotypic profiling. As an example, Figure 1b 

depicts a typical image of differentiated HepaRG cells cultured for 72 hours in the presence of 

ChromaLive, along with additional staining using Hoechst 33342.  To minimise its impact on cell 

physiology, Hoechst 33342 was added at a concentration of 100 ng/mL, three hours prior to imaging. 

 

 As an example, Figure 1b depicts a typical image of differentiated HepaRG cells cultured 

for 72 hours in the presence of ChromaLive, along with additional staining using Hoechst 33342.  

To minimise its impact on cell physiology, Hoechst 33342 was added at a concentration of 100 

ng/mL, three hours prior to imaging 

 

 

Cell culture with ChromaLive  

 

ChromaLive is a highly efficient solution designed to optimise cell culture and imaging 

processes. Unlike other additives, ChromaLive is non-toxic and does not require additional washing 

steps, making it an ideal choice for continuous use throughout various stages of cell culture.  To 

illustrate its effectiveness, we provide an experimental design for imaging MCF-7 breast cancer cells 

in the presence of increasing doses of a compound of interest.  
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Day 0: Cell Seeding in ChromaLive-Complemented Medium. Before starting, allow the 

provided ChromaLive solution (1,000x in DMSO) to stabilise at room temperature, ensuring there is 

no condensation.  Afterward, gently spin the tube to collect all the sample at the bottom.  Next, 

dilute 10µL of ChromaLive (1,000x) in 10mL of RPMI 1640 supplemented with 10% FBS and 1% 

PenStrep, mixing thoroughly.  This will serve as the standard culture medium for the entire assay. 

Finally, seed MCF-7 cells at a density of 7,000 cells per well (100µL per well) in a clear bottom, black 

96-well plate using the prepared culture medium.  

 

Day 1: Treating with Compounds of Interest.  Prepare a dose-response of the compound 

of interest.  As an example, staurosporine was sequentially diluted from 50µM to 5pM with 10-fold 

dilutions.  Add 11µL of the prepared compounds to the wells, resulting in final concentrations 

ranging from 5µM to 0.5pM.  It is important to equalise DMSO content across conditions.  For 

example, adjust to 0.2% DMSO (0.1% DMSO from ChromaLive and 0.1% DMSO from the compound 

of interest).  Imaging can be started immediately and repeated at the desired time points 

throughout the experiment to gather kinetic information.  Of note, imaging was performed over a 

period of 72 hours (3 days) in assays presented in the following sections.  

 

It is also possible to add a nuclear stain to the experiment at this stage (first day of imaging). 

For instance, Hoechst 33342 can be diluted to 1µg/mL in culture medium, and 12.5µL of this solution 

can be added per well to achieve a final concentration of 100ng/mL.  Incubate at least 3 hours at 

37°C before imaging, for sufficient staining at this low concentration. (In this case, increase 

compound volume to 12.5µL per well, for a 1:10 dilution in a final volume of 125µL per well). 

 

 

Image analysis and feature extraction 

 

 High-content screening is also referred to as highcontent analysis as the precision of the 

phenotypic screen is directly related to the richness of the information extracted from the images 

and the quality of the data analysis (Simm et al., 2018). Performing image analysis and extracting 

information from these images (often referred to as feature extraction) can be achieved by any 

image analysis software. Microscopy and HCS equipment manufacturers often offer their own 

software with their imaging equipment. In the next use-cases, we will be mostly relying on 

CellProfiler, a widely used and freely available software (Stirling et al., 2021). CellProfiler simplifies 

image analysis by automating the process and enables the extraction of multiple features, which 

can be stored for later downstream data analysis. To learn more about CellProfiler, visit 

https://cellprofiler.org. 

 

 CellProfiler allows users to create custom-built image analysis pipelines tailored to their 

specific requirements (Figure 3). A typical pipeline consists of three parts: input modules, analysis 

https://cellprofiler.org/
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modules, and saving/exporting modules to store images and extracted features for future reference 

and analysis. 

 

 The first step in the pipeline is to load images by dragging and dropping them into the 

Images module. Images or image folders can be conveniently added using the "Drop files and 

folders here" pane. The Metadata module enables users to connect relevant information to the 

imported image files. This information can be extracted from the image filenames or folder names. 

Properly setting up file naming conventions in advance simplifies this process. Another option is to 

link a metadata file to the imported images, which can contain information about cell type, 

treatment, compounds added, and the dosage for each condition. The NamesAndTypes module is 

where the real magic happens! By assigning rules based on the extracted metadata, users can assign 

specific channels to each image, creating image sets that contain all the imaged channels. This 

capability proves extremely valuable in subsequent analysis steps, as each channel can be used to 

extract specific features from the image sets. Lastly, the Groups module allows for dataset splitting 

into independent groups. This feature comes in handy when dealing with larger datasets or when 

performing time-lapse imaging, as it enables the analysis of each time point or group separately.  

 

Figure 3 provides a preview of the analysis modules that can be added to the pipeline's 

analysis section through the Adjust modules using the "+" button. Notably, the Identify Primary 

Objects and Identify Secondary Objects modules deserve special attention. These modules perform 

image segmentation, allowing users to create custom-named objects like "Nucleus" or "Cell". 

Specific features can then be extracted from these objects. Standard metrics such as image and 

object intensity, as well as shape and size information, can be extracted. Moreover, more subtle 

changes in images, such as texture or intensity distribution, can provide valuable insights into cell 

phenotypes. 

 

 Finally, it is essential to include modules that save generated images and export extracted 

features to a spreadsheet or database. Spreadsheets are useful for smaller datasets or when sharing 

results with third-party data analysis solutions. Exporting to a database, along with its properties 

file, is crucial for compatibility with CellProfiler Analyst software, which takes over the data analysis 

phase. An important feature of CellProfiler is the presence of help ("?") buttons throughout the 

interface, providing additional information and examples for each module and its settings. These 

resources are invaluable for users to familiarise themselves with the software and its capabilities. 

When adding analysis modules, it is crucial to extract as many relevant features as possible, as this 

directly impacts the precision and validity of the multiparametric analysis for phenotypic screening. 
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Figure 3: CellProfiler interface and pipeline overview. CellProfiler interface, showing the input 

modules (top 4 modules), followed by analysis modules, constituting a typical pipeline used for 

ChromaLive feature extraction. The superimposed window shows nucleus segmentation and is useful 

when fine-tuning the “Identify PrimaryObjects” module in Test Mode, used here to segment cell 

nucleus based on Hoechst 33342 staining. 

 
 

Data analysis: supervised and unsupervised approaches 

 

 If the goal of image analysis is to extract as much information as possible from the assay, 

the aim of data analysis is to process this information, usually hundreds of descriptors for thousands 

of objects, into interpretable results. Data analysis can be performed in a supervised or an 

unsupervised manner. In this section, we will explore both approaches. Unsupervised data analysis 

aims to reduce the complexity of the information while preserving its integrity, making it 

comprehensible. Typically, this involves reducing the dimensionality of the data (to be able to 

represent the data in two or three-dimensional graphs for example) and identifying relationships 

between conditions to generate clusters with similar phenotypes. The advantage of this approach 

is its unbiased nature, as it doesn't rely on user input. However, the absence of expert insight into 

the experimental conditions makes it challenging to connect the obtained clusters with underlying 

biology (Omta et al., 2020). 
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On the other hand, supervised data analysis involves training algorithms to recognise 

similar conditions and classify cells into discrete classes (Dürr and Sick, 2016; Kraus et al., 2016). 

With the correct controls and the proper labeling, this means that it is ultimately possible to have 

an expert user create models and provide the necessary training to establish a relationship between 

imaged samples and known mechanisms of action. While this approach relies on user knowledge 

and is prone to user bias, it offers the advantage of leveraging expert insight.  

 

In the following section, we will present examples of both approaches. First, an 

unsupervised analysis performed on the StratoMineR™ platform provided by Core Life Analytics, 

which demonstrates how this approach can identify different cell phenotypes (Omta et al., 2016). 

Afterwards, we will explore the use of supervised classification tools like CellProfiler Analyst to 

quantify compound-induced phenotypic changes. 

 

 

Unsupervised analysis to cluster cell phenotypes 

 

 Dose-response assays for multiple compounds were performed following the protocol 

described in the previous section. In summary, MCF-7 cells were plated at 1,000 cells per well in a 

384-well plate, with cell culture medium containing ChromaLive. After overnight adherence, cells 

were stained with 100ng/mL Hoechst 33342 for 3 hours at 37°C and 5% CO2. Subsequently, the 

cells were treated with various doses of compounds before imaging at regular time intervals for up 

to 72h on a PerkinElmer Opera QEHS system using the acquisition settings outlined in Table 1. 

Following imaging, CellProfiler pipelines, similar to the one described earlier, were used to extract 

features. The information related to the "cell" objects at the 24-hour time point was exported to a 

spreadsheet and uploaded to the StratoMineR™ platform.  

 

This web-based data-analytics platform facilitated data normalization and data reduction 

in a holistic fashion. We performed data reduction using principal component analysis (PCA) and 

generated 6 components from over 300 features. As a result, compound-specific clusters were 

visualised, with intermediate phenotypes observed at lower compound doses (Figure 4). As an 

example, Figure 4a illustrates staurosporine or thapsigargin-treated MCF-7 cells as distinct clusters 

relative to DMSO-treated controls. Focusing on staurosporine treatment (Figure 4b), an intermediate 

phenotype cluster corresponding to 5-50nM doses (green and light green points) can be 

distinguished, which is clearly distinct from a final phenotype cluster observed at higher 0.5-5µM 

doses of staurosporine (orange and red points). This preliminary result validates the classification of 

staurosporine-induced phenotypes into "intermediate" and "final" classes, which will be further 

explored using supervised training tools in the next section. 
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Example of supervised classification focused on staurosporine-induced apoptosis 

 

 The phenotypic changes induced by staurosporine, a known inducer of apoptosis 

(Belmoktar et al., 2001), were analysed. With the same dataset as presented earlier, we utilised the 

supervised analysis capabilities of CellProfiler Analyst with the Classifier module (Figure 5a). Images 

from dose-response experiments of various compounds and time points were previously analysed 

with CellProfiler, and the extracted features were exported to a database with the relevant properties 

file. Importantly, compound dosage was linked to each image through metadata, providing a 

platemap and treatment information for each condition. 

 

  
 

Figure 4: Detecting phenotypes with unsupervised clustering. Analysis performed on the H.C. 

StratoMineR™ platform developed by Core Life Analytics, and represented here after normalization 

and data reduction. a) 3D representation of principal component analysis (PCA), of ChromaLive-

stained MCF-7 cells treated for 24h with varying doses of staurosporine or thapsigargin. b) 2D 

representation of staurosporine-induced clusters, the PCA01 axis of Figure 4a) has been replaced 

by the CL488R/CL44Y intensity ratio (see Note) 

 
 

In this analysis, and following the earlier results obtained through unsupervised analysis, 

cells were separated into three different classes based on appearance (Figure 5a, columns from left 

to right): 

1. Control: Cells presenting a healthy morphology and staining. Cells treated with a control amount 

of DMSO were used to train this class. 

2. Apoptosis (intermediate): This intermediate phenotype class comprised cells treated with 

nanomolar range doses of staurosporine. Overall, this phenotype corresponded to elongated 

cells with fewer contacts with neighboring cells and less homogeneous ChromaLive staining. 

3. Final: This class corresponds to dead cells characterised by an intensely labeled condensed 

nucleus and concentrated ChromaLive488 signal, paired with an absence of ChromaLive561 

signal.  
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After training the classifier and evaluating the model using a confusion matrix (Figure 5a), 

the overall experiment was scored, and p(Enriched) values were obtained for each image (Jones, 

2009). These values were then plotted against different concentrations of staurosporine, and EC50 

and IC50 values were determined using GraphPad Prism software (Figure 5b). The "p(Enriched) 

Control" curve showed an IC50 of 4nM, indicating a decrease in the population of "Control" cells in 

favor of intermediate and final phenotype cells. In comparison, the "p(Enriched) Final" curve 

exhibited a higher E C50 of 70nM, indicating an increase in the population of "Final" dead cells. To 

explain the discrepancy between these doses, we stipulate that the "Intermediate" population 

appears at lower staurosporine concentrations. However, the curve corresponding to "p(Enriched) 

Intermediate" was more challenging to fit, as this population increased with the dosage of 

staurosporine before decreasing in favor of dead cells. A tentative fit of this curve (ignoring the two 

higher doses of staurosporine) yielded an EC50 of 3nM, consistent with the fit of "p(Enriched) 

Control". 

 

Dose-response curves serve as robust internal controls and aid in classifier verification. 

They help identify possible effects of "over-training," where classifier scores may reflect more user-

driven training input than objective truths from the imaging experiment. For instance, having the 

basal level of the dose-response curve correspond to the DMSO controls used to train "Control" 

phenotypes, objectively validates similar phenotypes for lower concentrations of treatment. Similarly, 

if specific conditions are used to train "Intermediate" or "Final" phenotypes, the ability to correctly 

fit the data with a typical sigmoid dose-response curve confirms the presence of these phenotypes 

across all tested concentrations. 

 

To complement this assay, an orthogonal assay was performed to assess cell apoptosis 

using the CellEvent™ Caspase-3/7 assay (ThermoFisher). The experimental design and cell seeding 

in a 96-well plate were identical. Cells were imaged according to the manufacturer's guidelines, and 

intensity measurements were plotted against concentrations of staurosporine (Figure 6b). After 

fitting, an EC50 of 95nM was calculated, which is in good accordance with the "Final" phenotype 

observed with ChromaLive. 

 

Additionally, a new dose-response tool currently being developed on the StratoMineR™ 

platform provides similar EC50 values (Figure 6a). For example, the "Final" phenotype can be 

accurately represented using the ChromaLive488- Red to ChromaLive488-Yellow ratio1 (EC50: 

120nM), while the "Intermediate" phenotype can be represented with PCA04 obtained from principal 

component analysis (EC50: 8nM). To facilitate comparison, the different dose-response curves are 

presented together in Figure 6c, allowing for a better evaluation of the relationships between 

apoptosis phenotypes and doses of staurosporine. 
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Figure 5: CellProfiler Analyst and staurosporine dose-response. a) Interface of the Classifier module 

of CellProfiler Analyst (CPA), showing objects (cells here) classified into 3 classes: “Control”, 

“Apoptosis_intermediate” and “Final”. Inset windows show a confusion matrix evaluating the trained 

classifier, as well as a hit table obtained after scoring the experiment. b) Plotted p(Enriched) values 

for each class, and fitted IC50 (“Control” phenotype, top graph) or EC50 (“Intermediate” and “Final” 

phenotypes, respectively middle and bottom graph). For each graph, various DMSO control 

triplicates are plotted along the xaxis to represent phenotype scoring throughout the plate. 
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Figure 6: Comparing staurosporine dose-responses. a) Dose-response curves obtained from the 

StratoMineR™ platform, after data reduction and PCA. Left graph plotted with CL488R/CL488Y ratio 

(EC50: 120nM), right graph with PCA04 (EC50: 8nM). DMSO control replicates are represented in 

red. b) Staurosporine-induced apoptosis measured with the CellEvent™ Caspase-3/7 assay. 

Normalised intensity measurements are plotted against staurosporine concentrations. Fitted EC50: 

95nM. c) Simulated curves with all measured EC50 across assays and analysis methods. Dashed lines 

correspond to “Intermediate” phenotypes (EC50: 3- 8nM), and full lines correspond to “Final” 

phenotypes (dead cells) (EC50: 70-120nM). 

 

 

Together, these results show the potential of ChromaLive staining to discriminate between 

different phenotypes, even when induced by the same compound. Indeed, an "Intermediate" 

phenotype that could be attributed to cells undergoing apoptosis is measurable in the nanomolar 

range of staurosporine after 24 hours of treatment. On the other hand, a "Final" phenotype, 

corresponding to dead cells as evidenced by the caspase assay, is only predominant at higher doses 

around 100nM 
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Example of temporal phenotypes: thapsigargin-induced ER stress and cell death  

 

A similar approach was taken to investigate phenotypic changes induced by thapsigargin, 

a known inducer of ER stress and cell death (Sehgal et al., 2017). Live-cell imaging with ChromaLive 

enabled the observation of cells at different time points after treatment. MCF-7 cells were imaged 

at 3h, 6h, 12h, and 24h following thapsigargin treatment. Similarly to the previous section, after 

image segmentation and feature extraction with CellProfiler, cells were classified into three different 

classes using the Classifier tool in CellProfiler Analyst: Control, ER stress (intermediate), and Final 

(Figure 7a). The intermediate phenotype corresponded to cells presenting a distinctive brighter, ring-

like ChromaLive561 staining, while dead cells classified in the "Final" phenotype exhibited a 

condensed nucleus and a brighter ChromaLive488 staining. 

 

 

 

 

Figure 7: Thapsigargin treatment kinetics. a) Screenshot of CellProfiler Analyst (Classifier module) 

interface showing different classified phenotypes: “Control”, “ER_stress” and “Final” (dead cells). b) 

Representing p(Enriched) values against thapsigargin concentrations for “Control” phenotype (top 

row) and “Final” phenotype (bottom row) at different time points (3h, 6h, 12h, 24h, from left to 

right). DMSO controls are plotted in black, and thapsigargin-treated conditions in red. c) 

Superposition of simulated curves for the “Control” phenotype (left graph) and “Final” phenotype 

(right graph). Curves are simulated based on measured IC50 and EC50 values as well as response 

amplitudes. 

 

 

 Training the classifier over multiple time points generated graphs for the "Control" and 

"Final" phenotypes (Figure 7b). Fitting dose-response curves revealed variations in IC50 and EC50 

values as well as the amplitude of phenotypic changes over time. Notably, an IC50 of 5nM was 
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measured after 3 and 6 hours of thapsigargin treatment, which decreased to 2nM after 12 hours 

(remaining stable at 24 hours). In contrast, no significant enrichment in the "Final" phenotype was 

observed after 3 hours, and after 6 hours of thapsigargin treatment,the measured EC50 was much 

higher at around 130nM. However, after 12 hours of treatment, the EC50 decreased to 3nM (stable 

at 24 hours). These different curves are represented together in Figure 7c to illustrate the evolution 

of IC50 and EC50 values, as well as the amplitude of phenotypic changes over time. This 

demonstrates how the "Final" phenotype occurs more rapidly at higher doses, and how the ER 

stress "Intermediate" phenotype eventually leads to cell death. 

 

 

Conclusion  
 

The presented results demonstrate the remarkable versatility of ChromaLive as a non-toxic 

live cell dye, opening up numerous possibilities for experimental and screening design. Our findings 

indicate that ChromaLive has minimal impact on cell proliferation and gene expression in cell culture, 

allowing for the growth of cell models in the presence of the dye. This feature is particularly 

advantageous in progenitor or stem cell differentiation studies. Furthermore, the extended 

incubation time offered by ChromaLive proves valuable in achieving stable and homogeneous 

staining in 3D cell models (refer to Figure 8). Beyond its simple addition to the culture medium, 

ChromaLive's fluorogenic properties, which enable its fluorescence only when integrated into 

cells,further simplify experimental design by eliminating the need for washing steps 

 

 

 
 

Figure 8: ChromaLive staining of cancer patient-derived organoids. From left to right, ovarian cancer 

patient-derived organoids were grown for 7, 22 and 35 days respectively, in custom hydrogel and 

with culture medium containing ChromaLive, imaged at 20x magnification. In yellow: ChromaLive561; 

in red: ChromaLive488_Red. Scale bar: 100nm. (Images courtesy of Betty Li and Alla Buzina from the 

Sunnybrook Research Institute). 

 

. The "mix-and-read" protocol highlights how seamlessly ChromaLive can be incorporated 

into existing screening assays. By adding ChromaLive to the culture medium and performing the 
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subsequent live imaging at the desired incubation time, researchers can easily integrate this dye 

into their experiments. Moreover, this streamlined experimental design facilitates repeated imaging 

of the same conditions, introducing a kinetic dimension to high-volume screens. Notably, our studies 

on 2D cell cultures demonstrate the possibility of conducting kinetic screens over 72 hours without 

significant impact on cellular health or loss of cell labeling intensity. 

 

Importantly, our validation demonstrates that while ChromaLive relies on non-specific 

cellular staining, it is remarkably well-suited for agnostic phenotypic profiling.  A single assay with 

ChromaLive can detect a multitude of cellular phenotypes, although we have not delved into the 

specific details for the sake of brevity.  Simple intensity measurements can distinguish between live 

and dead cells, while subtle image descriptors can reveal more nuanced phenotypes such as early 

apoptosis, ER stress, autophagy, and more.  Leveraging the progress in data science and high 

content screening tools, ChromaLive emerges as an exceptionally versatile and straightforward tool 

for exploring cell phenotypes in the context of drug discovery. 
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