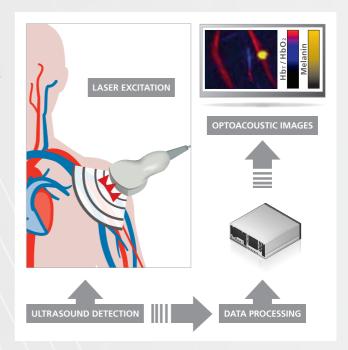


MSOT TECHNOLOGY

Imaging sequence:

- Illumination of tissue with laser pulses at multiple wavelengths
- Detection of induced ultrasound pressure waves
- Spectral unmixing to analyze individual absorbers

Technology benefits:


Combines the molecular specificity of optical imaging with the depth and spatiotemporal resolution of ultrasound

• Molecular specificity:

Identify and quantify disease-related biomarkers, revealing endogenous absorbers and injected probes

• Depth & spatiotemporal resolution:

Acquire soft tissue images, with a spatial resolution of up to 80 μ m, in vivo and in real time

OPUS:

hybrid OPtoacoustic & UltraSound imaging

Ultrasound imaging integrated in the MSOT Acuity *Echo* enables the visualization of both tomographic optoacoustic and ultrasound information at the same time, thus providing additional and complementary information on tissue morphology.

MSOT VS. OTHER IMAGING MODALITIES

Imaging is an essential tool for medical diagnosis. Various technologies have evolved over time, each one providing specific benefits – but also limitations. Innovation in biomedical imaging facilitates new avenues for diagnosis and treatment of diseases.

X-ray, **ultrasound** and magnetic resonance imaging (**MRI**) provide anatomical information at high spatial resolution but with limited molecular specificity and sensitivity. On the other hand, positron emission tomography (**PET**) is a molecular imaging modality with high sensitivity, but suffers from low spatial resolution.

Modality	Spatial resolution	Temporal resolution	Sensitivity	Cost and infrastructure	Burden for patients
MSOT	•	•	0	•	•
X-ray	•	0	-	•	_
Ultrasound	•	•	-	•	•
MRI	•	0	_	_	0
PET/SPECT	_	-	•	-	-

MSOT – Multispectral Optoacoustic Tomography is a novel imaging technology. Besides its high spatiotemporal resolution and sensitivity for optical contrast, MSOT imaging comes at relatively low cost.

Additionally, MSOT imaging poses no significant burden – particulary no ionizing radiation – on patients and users.

SYSTEM COMPONENTS

Amended Galant half (U)Visid () Control of the con

MSOT scanner hardware

- Mobile imaging platform with integrated highperformance workstation and adjustable screen
- Graphical user interface controlled via touchscreen and customized keyboard
- Detectors for different applications with variable center frequency, geometry, and size

ViewMSOT™ software

- Intuitive software design
- Patient and study data administration
- Automated spectral unmixing and signal quantification
- Wide range of tools for data analysis and export
- Remote analysis support

SYSTEM USE

System design allows intuitive use:

- Workflow comparable to that of conventional ultrasound
- Handheld detectors for easy patient access
- Real-time spectral analysis of tissue chromophore distribution
- One click acquisition of single images and image sequences
- Detailed analysis and comparison of multiple images
- Export of image data and standard examination reports

A

ACCESSORIES AND OPTIONS

Standard accessories:

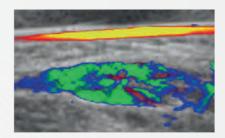
- Laser safety goggles
- User kit, incl. ultrasound gel, disinfectant wipes, sterile covers
- Calibration phantom

Options:

- 2D and 3D detectors customized for particular application needs (2.5-10 MHz, 1-512 elements)
- Advanced software tools for image analysis
- Device for imaging of tissue specimens

VISUALIZED CHROMOPHORES

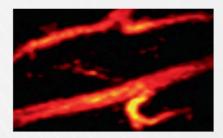
MSOT detects and visualizes signals that represent the spectrally distinct absorbance of chromophores in tissue. Preclinical and clinical studies have proven the effective detection of endogenous chromophores such as hemoglobin, melanin and lipids as well as that of commonly used and clinically approved optical contrast agents such as ICG and methylene blue.


CASE STUDIES

MSOT has already been applied in a variety of clinical applications, including the examples listed below:

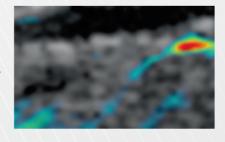
Nodal assessment in malignant melanoma¹

MSOT has shown the potential for non-radioactive localization of sentinel lymph nodes (SLNs) by tracking the lymphatic drainage of ICG in melanoma and other cancers where SLN biopsy is a routine diagnostic procedure.


In melanoma, the absence of a melanin signal in the SLN can potentially rule out the presence of metastasis, and thereby spare many patients an unnecessary surgical procedure.

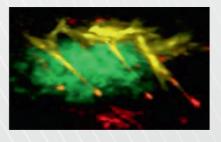
Peripheral vascular diseases (PVD)²

MSOT has the ability to image vessels with a diameter of less than 100 μm in real time and contrary to other imaging modalities such as X-ray, CT and MRI, without the need for contrast agents.


Images acquired by MSOT can show vascular malformation and blood/tissue oxygenation state, for example in PVD patients, thereby supporting the assessment of disease progression.

Thyroid nodules³

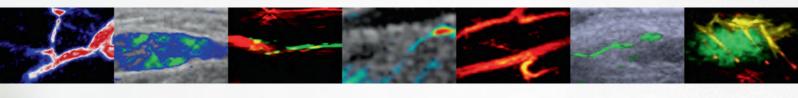
Only 5% of all biopsied thyroid nodules are malignant. Optoacoustic tomography could help to distinguish malignant and benign nodules non-invasively by determining perfusion and tissue oxygenation of the nodules and showing vascularization patterns.


Similar methods are used to assess malignancy of other cancerous lesions, e.g. in breast cancer patients.

Alopecia⁴

Monitoring of viable hair follicles over time is crucial for understanding hair pathophysiology and discovery of novel therapies for alopecia, but also other follicular

MSOT provides structural information and functional properties of the entire hair follicle, such as vascularization and oxygenation of the bulb and the lipid volume of the associated sebaceous glands.



- 1) Stoffels I et al., Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging, Sci Transl Med. 2015 Dec 9;7(317):317ra199. DOI: 10.1126/scitranslmed.aad1278.
- 2) Deán-Ben XL and Razansky D, Functional optoacoustic human angiography with handheld video rate three dimensional scanner, Photoacoustics. 2013 Nov 12;1(3-4):68-73. DOI: 10.1016/j.pacs.2013.10.002.
- 3) Dogra VS et al., **Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer**, AJR Am J Roentgenol. 2014 Jun;202(6):W552-8. DOI: 10.2214/AJR.13.11433.
- 4) Ford SJ et al., Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography, J Invest Dermatol. 2015 Dec 29. DOI: 10.1016/j.jid.2015.09.001.

Specifications	MSOT Acuity ¹	MSOT Acuity Echo ²			
Image acquisition					
Image rate (live display)	up to 50 fps				
Acquisition time	< 10 ms (single wavelength) < 100 ms (multispectral)				
Key system components					
SpectraPULSE™ illumination system					
Laser wavelength spectrum	Standard: 680-980 nm Optional: 670-1250 nm				
Pulse repetition rate	10-50 Hz (adjustable)				
Maximum pulse energy@750 nm	30 mJ				
PulseCRTL™	Pulse energy control, laser performance monitoring				
Wavelength tuning	Tuning time: < 10 ms Minimum step size: 1 nm				
RapidSCAN™ data acquisition electronic	cs				
Channels for simultaneous acquisition	up to 512				
Sampling rate	up to 40 MS/s				
OPUS™ hybrid ultrasound mode					
Transmit frequency	n/a	2-8 MHz			
Advanced imaging methods	n/a	Synthetic aperture beamforming, spatial compounding			
ViewMSOT™					
Data management	Patient/study data administration	, creation of reports, data export			
Data acquisition	2D/3D, single images, image sequences, multispectral data sets				
Data processing	Image reconstruction, spectral unmixing, signal quantification				
Data analysis	Measurements, spectral analysis, color maps, image filters				
General technical specifications					
Hardware scanner console	Intel Core i7/Xeon, 32 GByte RAM, 4 TByte HDD data storage, 24" TFT touchscreen				
Operating system	Windows 8 embedded				
External Interfaces	1 GBit Ethernet, remote interlock connector				
Dimensions (width x depth x height weight)	73 x 91 x 152 cm 290 kg				
Power	16A/230VAC, 50/60 Hz				
Laser classification	Class 4				

TomoARC™ detectors	Standard 2D	Standard 3D	Optional detectors	
Angular coverage	125°	110°	90-180°	
Center frequency	3 MHz	2.5 MHz	2.5-10 MHz > 50%	
Number of elements	256	384	1-512	
Field of view	25 mm	15 x 15 mm	up to 30 20 x 20 mm	
Depth penetration (MSOT)	up to 30 mm	up to 25 mm	up to 30 mm	
Maximum resolution	275 μm	390 μm	80-390 μm	

¹⁾ MSOT Acuity will be CE marked in 2016. Please contact us for further information. 2) MSOT Acuity Echo is currently only available as a research platform.

SELECTION OF RELATED PUBLICATIONS

• Stoffels I et al.

Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,

Sci Transl Med. 2015 Dec 9;7(317):317ra199.

Taruttis A and Ntziachristos V.

Advances in real-time multispectral optoacoustic imaging and its applications, Nat. Photonics. 2015;9:219–227.

• Zackrisson S et al.

Light in and sound out: emerging translational strategies for photoacoustic imaging, Cancer Res. 2014 Feb 15;74(4):979-1004.

• Garcia-Uribe A et al.

Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer, Sci Rep. 2015 Oct 29;5:15748.

• Dogra VS et al.

Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer,

AJR Am J Roentgenol. 2014 Jun;202(6):W552-8.

• Buehler A et al.

Real-time handheld multispectral optoacoustic imaging, Opt Lett. 2013 May 1;38(9):1404-6.

• Deán-Ben XL and Razansky D.

Functional optoacoustic human angiography with handheld video rate three dimensional scanner, Photoacoustics. 2013 Nov 12;1(3-4):68-73.

• Razansky D et al.

Volumetric real-time multispectral optoacoustic tomography of biomarkers, Nat Protoc. 2011 Jul 7;6(8):1121-9.

• Bayer CL et al.

Photoacoustic imaging: a potential tool to detect early indicators of metastasis, Expert Rev Med Devices. 2013 Jan;10(1):125-34.

• Taruttis A et al.

Mesoscopic and macroscopic optoacoustic imaging of cancer, Cancer Res. 2015 Apr 15;75(8):1548-59.

• Mehrmohammadi M et al.

Photoacoustic Imaging for Cancer Detection and Staging, Curr Mol Imaging. 2013 Mar;2(1):89-105.

iThera Medical GmbH Zielstattstrasse 13 D-81379 Munich Phone: +49 (0) 89 700 7449-00 Fax: +49 (0) 89 700 7449-90 Email: info@ithera-medical.com